Dnn Input & Output
DnnInput
DnnInput class that consists of input array of Dnn.
This is a private class of softneuro, instance can not be constructed directly,users can get DnnInput instance using Dnn.get_input().
Attributes
- tensor: A Tensor object that represents input tensor.
- blob: A Tensor object that stores entity of
tensor
depending on dtype of routines. Available afterDnn.compile()
. - attrs: A Params object as the attributes of the input.
Note
If blob
is accessed before Dnn.compile()
, Dnn.compile()
is automatically called so that blob
gets available.
Examples
import softneuro
from PIL import Image
# Load dnn file and compile
dnn = softneuro.Dnn('model.dnn')
dnn.compile()
# Set image data to the input
image = Image.open('image001.jpg')
input = dnn.input[0]
input.set_blob(image)
set_blob
DnnInput.set_blob(data, batch=0)
Set input blob to DnnInput.
Arguments
- data: A tensor as an input data.
- batch: Batch size.
DnnOutput
DnnOutput class that consists of output array of Dnn.
This is a private class of softneuro, instance can not be constructed directly,users can get DnnOutput instance using Dnn.get_output().
Attributes
- tensor: A Tensor object that represents output tensor.
- blob: A Tensor object that stores entity of
tensor
depending on dtype of routines. Available afterDnn.compile()
. - attrs: A Params object as the attributes of the output.
Note
If blob
is accessed before Dnn.compile()
, Dnn.compile()
is automatically called so that blob
gets available.
Examples
# Run inference
dnn.forward()
# Get output data
output = dnn.output[0]
params = output.attrs
labels_param = params['labels']
data = output.blob.data