Tensor
Tensor
softneuro.core.Tensor(*args, **kwargs)
Tensor class.Tensors are n-dimensional arrays.
This is a private class of softneuro, instance can not be constructed directly, users can get Tensor instance using Dnn.find_tensor().
Attributes
- data : Pointer to the tensor data in memory whose data type is numpy.ndarray.
- dtype : Tensor data type, one of float32, uint8, int8, int32, int64, qint8, qint32.
- name : Tensor name.
- qaxis : Quantization axis.
- quants : Quantizers whose data type is softneuro.core.DnnList.
- rank : Tensor rank (how many dimensions).
- shape : Tensor shape.
areDTypeAndBatchShapeOf
Tensor.areDTypeAndBatchShapeOf(i_dtype, i_shape)
Verifies if the tensor dtype and shape per batch match the arguments.
Returns True if DType and shape per batch match, False otherwise.
Arguments
- i_dtype (softneuro.DType): DType to be matched.
- i_shape (tuple): Shape to be matched.
Returns
type : bool, true if the tensor dtype and shape per batch match the arguments else false.
areDTypeAndShapeOf
Tensor.areDTypeAndShapeOf(i_dtype, i_shape)
Verifies if the tensor dtype and shape match the arguments.
Returns True if DType and shape match, False otherwise.
Arguments
- i_dtype (softneuro.DType): DType to be matched.
- i_shape (tuple): Shape to be matched.
Returns
type : bool, true if the tensor dtype and shape match the arguments else false.
copy
Tensor.copy(val)
Copy data into the tensor.
Arguments
- val (numpy.ndarray or list): Data to be copied.
copy_batch
Tensor.copy_batch(val, batch)
Copy data into the given batch index.
Arguments
- val (numpy.ndarray or list): Data to be copied.
- batch (int): Batch index.
format
Tensor.format(dtype, shape)
Sets the tensor dtype and shape.
Arguments
- dtype (Softneuro.DType): Target data type.
- shape (tuple): Target tensor shape.
getDType
Tensor.getDType()
Returns the tensor DType.
Returns
type : DType, DType of tensor.
getHash
Tensor.getHash()
Returns hash of tensor.
Returns
type : int, hash of tensor.
getName
Tensor.getName()
Returns name of tensor.
Returns
type : string, name of tensor.
getRank
Tensor.getRank()
Returns the tensor rank.
Returns
type : int, rank of tensor.
getShape
Tensor.getShape()
Returns the tensor shape.
Returns
type : tuple , int, shape of tensor.
getQAxis
Tensor.getQAxis()
Returns the quantization axis.
Returns
type : int, QAxis of tensor.
getQuant
Tensor.getQuant(i_index)
Returns the quant at the given index.
Arguments
- i_index (int): Index of the quant to be return.
Returns
type : Quant, quants of tensor.
getQuantNum
Tensor.getQuantNum()
Returns the number of quants.
Returns
type : int, number of quants of tensor.
init_quant
Tensor.init_quant(qmode, qaxis)
Initializes the quantizers with qmode over qaxis. Returns an error if the tensor dtype isn't qint8 (not supported yet).
Arguments
- i_qmode (Softneuro.qmode): Quantization mode.
- i_qaxis (int): Quantization axis.
isFormatted
Tensor.isFormatted()
Returns True if the tensor was formatted, False otherwise.
normalize
Tensor.normalize()
Normalizes the tensor.
Returns True if the tensor was normalized, False otherwise.
Returns
type : bool, true if success else false.