DnnLayer
DnnLayer
softneuro.core.DnnLayer(*args, **kwargs)
DnnLayer class is the basic element of DnnNet.
This is a private class of softneuro, instance can not be constructed directly,users can get DnnLayer instance using DnnNet.add_layer(), DnnNet.get_input_layer(), DnnNet.get_output_layer(), etc.
Attributes
- attrs: Attribuites of the layer.
- child_net: child net.
- compiled_routine_desc: Routine descriptor of the compiled routine.
- compiled_routine_params: Parameters of the compiled routine.
- index: index of the layer in the owner DnnNet.
- inputs: A series of DnnLayerInput objects of the layer.
- is_constant: whether the layer is constant or not.
- is_failed: whether the layer is failed to parse, routinize, precompile or compile.
- is_immutable: whether the layer is immutable or not.
- is_mutable: whether the layer is immutable or not.
- name: Name of the layer.
- owner: DnnNet that the layer belongs to.
- params: Parameters of the layer.
- parsed_params: Parsed parameters of the layer .
- routine_desc: Routine descriptor of the layer such as cpu/naive, cpu/neon.
- routine_params: Parameters of the routine.
- state: State of dnn layer.
- type: Type of the layer.
- outputs: A series of DnnLayerOutput objects of the layer.
- weights: A series of weights in the layer.
connect
DnnLayer.connect(i_output_index, i_next_layer, i_input_index=-1)
Connect an output of the layer to an input of another succeeding layer.
Arguments
- i_output_index: The index of output to connect.
- i_next_layer: A succeeding DnnLayer object to be connected.
- i_input_index: The index of input on the succeeding layer.
disconnect
DnnLayer.disconnect(i_output_index, i_next_layer, i_input_index)
Disconnect an output of the layer from an input of another succeeding layer.
Arguments
- i_output_index: The index of output to disconnect.
- i_next_layer: A succeeding DnnLayer object to be disconnected.
- i_input_index: The index of input on the succeeding layer.
disconnect_all
DnnLayer.disconnect_all()
Disconnects the layer from other layers.
get_input
DnnLayer.get_input(input_index)
Gets input object DnnLayerInput of the layer.
Arguments
- input_index: The input index of the interest.
Returns
Type : DnnLayerInput,input of the layer.
get_output
DnnLayer.get_output(output_index)
Gets output object DnnLayerOutput of the layer.
Arguments
- output_index: The input index of the interest.
Returns
Type : DnnLayerOutput,output of the layer.
set_weight
DnnLayer.set_weight(key, val)
Sets weight to the layer.
Arguments
- key: A string for the name of the weight.
- val: An object for the weight values, any of the following data types.
Data types for val
- int
- float
- numpy.float
- numpy.ndarray
- Tensor