conv2
2D convolution.
This layer performs 2D convolution operations on an input.
Parameters
- strides : Integer(s), stride values.
Two integers mean [stride_y, stride_x].
One integer means stride_y and stride_x have the same value.
The default is 1. - dilations : Integer(s), dilation ratios.
Two integers mean [dilation_y, dilation_x].
One integer means dilation_y and dilation_x have the same value.
The default is 1. - padding : String, padding mode.
"same_upper" and "valid" are compatible with "same" and "valid"on Keras (TensorFlow).
"general" is compatible with Caffe.
The default is "valid". - pads : Integer(s), pad values to the input.
Four integers mean [pad_top, pad_left, pad_bottom, pad_right].
Two integers mean [pad_top, pad_left] where pad_bottom and pad_right are same as pad_top and pad_left respectively.
One integer means that pad_top, pad_left, pad_bottom and pad_right have the same value.
The default is 0. - has_relu : Boolean, whether the layer applies a ReLU function to the output.
The default is false. - relu_max_value : Number, the max value of ReLU output.
Valid only when has_relu is true and relu_max_value > 0.0f.
The default is -1.0f, i.e. there is no max value.
Weights
-
kernel : 4D tensor [height, width, channels, filters], kernel (mandatory).
-
bias : 1D tensor [filters], bias (optinal).