numpy Tensor Operation Commands¶
Commands for handling numpy files formatted as tensors for snr inputs.
Tensor Specification¶
A numpy tensor can be specified via Tensor Specification.
The Tensor Specification format is that of comma-separated key and value pairs, as in 'key1=val1,key2=val2,...'
.
Available keys
Key | Description |
---|---|
shape | Tensor shape. Dimension shapes are concatenated by x . Example: 1x224x224x3 |
dtype | Tensor data type, defaults to float32 |
val | Tensor initial values. Can be set to a pre-defined scalar or to random values inside a range. A range is defined by two numbers separated by .. . Example: 0.0..1.0 |
Example
Define a tensor with 1x128x128x16
shape, of float32
type and containing random numbers from -1.0 to 1.0.
shape=1x128x128x16,val=-1.0..1.0
The following help is also available.
$ softneuro help tensor_spec
usage: shape=SHAPE[,dtype=DTYPE][,val=VAL]
The tensor specification.
[REQUIRED]
SHAPE a shape of tensor. It is given as numbers concatenated by 'x' (e.g.
1x224x224x3).
[OPTIONS]
DTYPE a data type. The default is 'float32'.
VAL element values. It is given as a number for constant values (e.g.
0.5) or two numbers concatenated by '..' for random values between a
range (e.g. 0.0..1.0). The default is '-1..1'.
[EXAMPLE]
shape=1x128x128x16,val=-0.5..2
represetns a tensor whose shape is 1x128x128x16, data type is 'float32'
and elements have random value from -0.5 to 2.
mknpy¶
Create a tensor and save it in numpy format.
Usage
usage: softneuro mknpy [--help] SPEC ONPY
Arguments
Argument | Description |
---|---|
SPEC | Tensor Specification. |
ONPY | Output numpy file name. |
Flags
Flag | Description |
---|---|
-h, --help | Shows the command help. |
Example
Creates a tensor.npy file containing the tensor data at the execution directory.
※There's no terminal output
$ softneuro mknpy "shape=1x128x128x16,val=-1.0..1.0" tensor.npy
attrnpy¶
Shows tensor attributes, as listed below.
- NAME : File name
- DTYPE : Data type
- SHAPE : Shape
- RANGE : Data range
- AVERAGE : Data average
- STDEV : Data standard deviation
Usage
usage: softneuro attrnpy [--help] NPY...
Arguments
Argument | Description |
---|---|
NPY | numpy file to have its attributes shown. |
Flags
Flag | Description |
---|---|
-h, --help | Shows the command help. |
Example
$ softneuro attrnpy tensor.npy
NAME DTYPE SHAPE RANGE AVERAGE STDEV
tensor.npy float32 1x128x128x16 -0.999991:0.999995 0.00036936 0.576519
viewnpy¶
Shows the values from a numpy file.
Usage
usage: softneuro viewnpy [--from INDICES] [--cols COLS] [--help] NPY
Arguments
Argument | Description |
---|---|
NPY | numpy file to have its values shown. |
Flags
Flag | Description |
---|---|
--from INDICES | Indices from where to start showing data. |
--cols COL | Specify columns to be displayed. |
-h, --help | Shows the command help. |
Example
$ softneuro viewnpy --from "127,127,10" tensor.npy
(127,127,10) -0.459925, -0.40616,
(127,127,12) 0.89318, -0.275693, -0.337535, 0.115791]
cmpnpy¶
Compares two numpy files values, showing their signal-to-noise ratio in db. As a rule of thumb, 100db or more indicates a match, 60db or more indicates reasonable similarity, 20db or more indicates some similarity, less than 20db indicates not a match.
Usage
usage: softneuro cmpnpy [--axis A] [--help] TRUENPY TGTNPY
Arguments
Argument | Description |
---|---|
TRUENPY | A numpy file or a directory containing numpy files which have the correct numbers. |
TGTNPY | A numpy file or a directory containing numpy files which have the data to be compared. |
Flags
Flag | Description |
---|---|
--axis A | Which axis to be compared. |
-h, --help | Shows the command help. |
Example
$ softneuro cmpnpy tensor.npy tensor2.npy
SNR(db) PSNR(db) MIN:MAX
> 200 > 200 -1:1